Semantic Interaction Matching Network for Few-shot Knowledge Graph Completion

نویسندگان

چکیده

The prosperity of knowledge graphs (KG), as well related downstream applications, have raised the urgent request graph completion techniques for fully supporting KG reasoning tasks, especially under circumstance training data scarcity. Though large efforts been made on solving this challenge via few-shot learning tools, they mainly focus simply aggregating entity neighbors to represent references, while enhancement from latent semantic correlation within has largely ignored. To that end, in paper, we propose a novel solution, named Semantic Interaction Matching network (SIM), which applies Transformer framework enhance representation with capturing interaction between neighbors. Specifically, first design entity-relation fusion module adaptively encode incorporating relation representation. Along line, layers are integrated capture neighbors, diversification support set. Finally, similarity score is attentively estimated attention mechanism. Extensive experiments two public benchmark datasets demonstrate our model outperforms variety state-of-the-art methods significant margin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Few-Shot Learning with Graph Neural Networks

We propose to study the problem of few-shot learning with the prism of inference on a partially observed graphical model, constructed from a collection of input images whose label can be either observed or not. By assimilating generic message-passing inference algorithms with their neural-network counterparts, we define a graph neural network architecture that generalizes several of the recentl...

متن کامل

Semantic Graph for Zero-Shot Learning

Zero-shot learning aims to classify visual objects without any training data via knowledge transfer between seen and unseen classes. This is typically achieved by exploring a semantic embedding space where the seen and unseen classes can be related. Previous works differ in what embedding space is used and how different classes and a test image can be related. In this paper, we utilize the anno...

متن کامل

ProjE: Embedding Projection for Knowledge Graph Completion

With the large volume of new information created every day, determining the validity of information in a knowledge graph and filling in its missing parts are crucial tasks for many researchers and practitioners. To address this challenge, a number of knowledge graph completion methods have been developed using low-dimensional graph embeddings. Although researchers continue to improve these mode...

متن کامل

Attentive Path Combination for Knowledge Graph Completion

Knowledge graphs (KGs) are often significantly incomplete, necessitating a demand for KG completion. Path-based relation inference is one of the most important approaches to this task. Traditional methods treat each path between entity pairs as an atomic feature, thus inducing sparsity. Recently, neural network models solve this problem by decomposing a path as the sequence of relations in the ...

متن کامل

Open-World Knowledge Graph Completion

Knowledge Graphs (KGs) have been applied to many tasks including Web search, link prediction, recommendation, natural language processing, and entity linking. However, most KGs are far from complete and are growing at a rapid pace. To address these problems, Knowledge Graph Completion (KGC) has been proposed to improve KGs by filling in its missing connections. Unlike existing methods which hol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ACM Transactions on The Web

سال: 2023

ISSN: ['1559-1131', '1559-114X']

DOI: https://doi.org/10.1145/3589557